Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics

Identifieur interne : 000E72 ( Main/Repository ); précédent : 000E71; suivant : 000E73

Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics

Auteurs : RBID : Pascal:13-0142213

Descripteurs français

English descriptors

Abstract

Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0142213

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics</title>
<author>
<name sortKey="Koidis, C" uniqKey="Koidis C">C. Koidis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Logothetidis, S" uniqKey="Logothetidis S">S. Logothetidis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kassavetis, S" uniqKey="Kassavetis S">S. Kassavetis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kapnopoulos, C" uniqKey="Kapnopoulos C">C. Kapnopoulos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karagiannidis, P G" uniqKey="Karagiannidis P">P. G. Karagiannidis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Georgiou, D" uniqKey="Georgiou D">D. Georgiou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laskarakis, A" uniqKey="Laskarakis A">A. Laskarakis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>54124 Thessaloniki</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0142213</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0142213 INIST</idno>
<idno type="RBID">Pascal:13-0142213</idno>
<idno type="wicri:Area/Main/Corpus">000F94</idno>
<idno type="wicri:Area/Main/Repository">000E72</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air drying</term>
<term>Atomic force microscopy</term>
<term>Butyric acid</term>
<term>Conducting material</term>
<term>Control code</term>
<term>Creep</term>
<term>Crystallites</term>
<term>Crystallization</term>
<term>Ester</term>
<term>Feasibility</term>
<term>Fullerene compounds</term>
<term>Grazing incidence</term>
<term>High precision</term>
<term>ITO layers</term>
<term>Incidence ray</term>
<term>Indium oxide</term>
<term>Microhardness</term>
<term>Morphology</term>
<term>Nanostructure</term>
<term>Organic solar cells</term>
<term>Polymer blends</term>
<term>Roll-to-roll process</term>
<term>Serigraphy</term>
<term>Spectroscopic ellipsometry</term>
<term>Styrenesulfonate polymer</term>
<term>Thin film</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Warm air</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Morphologie</term>
<term>Nanostructure</term>
<term>Cellule solaire organique</term>
<term>Précision élevée</term>
<term>Code commande</term>
<term>Séchage par air</term>
<term>Sérigraphie</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Ellipsométrie spectroscopique</term>
<term>Microscopie force atomique</term>
<term>Cristallite</term>
<term>Incidence rasante</term>
<term>Incidence rayon</term>
<term>Diffraction RX</term>
<term>Microdureté</term>
<term>Fluage</term>
<term>Cristallisation</term>
<term>Air chaud</term>
<term>Faisabilité</term>
<term>Thiophène dérivé polymère</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Composé du fullerène</term>
<term>Couche mince</term>
<term>Matériau conducteur</term>
<term>Styrènesulfonate polymère</term>
<term>Mélange polymère</term>
<term>Oxyde d'indium</term>
<term>ITO</term>
<term>Procédé roll-to-roll</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KOIDIS (C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LOGOTHETIDIS (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KASSAVETIS (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KAPNOPOULOS (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KARAGIANNIDIS (P. G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GEORGIOU (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LASKARAKIS (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Aristotle University of Thessaloniki, Physics Department, Lab for Thin Films-Nanosystems and Nanometrology</s1>
<s2>54124 Thessaloniki</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>36-46</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000500603500060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>75 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0142213</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Roll-to-roll (R2R) gravure exhibits significant advantages such as high precision and throughput for the printing of photoactive and conductive materials and the fabrication of flexible organic electronics such as organic photovoltaics (OPVs). Since the photoactive layer is the core of the OPV, it is important to investigate and finally control the process parameters and mechanisms that define the film morphology in a R2R process. The scope of this work is to study the effect of the R2R gravure printing and drying process on the nanomorphology and nanostructure of the photoactive P3HT:PCBM thin films printed on PEDOT:PSS electrodes towards the fabrication of indium tin oxide (ITO)-free flexible OPVs. In order to achieve this, P3HT:PCBM blends of different concentration were R2R printed under various speeds on the PEDOT:PSS layers. Due to the limited drying time during the rolling, an amount of solvent remains in the P3HT:PCBM films and the slow-drying process takes place which leads to the vertical and lateral phase separation, according to the Spectroscopic Ellipsometry and Atomic Force Microscopy analysis. The enhanced slow-drying leads to stronger phase separation, larger P3HT crystallites according to the Grazing Incidence X-Ray Diffraction data and to weaker mechanical response as it was shown by the nanoindentation creep. However, in the surface of the films the P3HT crystallization is controlled by the impinged hot air during the drying, where the more the drying time the larger the surface P3HT crystallites. The integration of the printed P3HT:PCBM and PEDOT:PSS layers in an OPV device underlined the feasibility of fabricating ITO-free flexible OPVs by R2R gravure processes.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Précision élevée</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>High precision</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Precisión elevada</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Code commande</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Control code</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Código control</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Séchage par air</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Air drying</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Secado por aire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Sérigraphie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Serigraphy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Serigrafía</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ellipsométrie spectroscopique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Spectroscopic ellipsometry</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Elipsometría espectroscópica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Cristallite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystallites</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Cristalita</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Incidence rasante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Grazing incidence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Incidencia rasante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Incidence rayon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Incidence ray</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Incidencia rayo</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Microdureté</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Microhardness</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Microdureza</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Fluage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Creep</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Fluencia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cristallisation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Crystallization</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Cristalización</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Air chaud</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Warm air</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Aire caliente</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Faisabilité</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Feasibility</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Practicabilidad</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Ester</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Matériau conducteur</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Conducting material</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Material conductor</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Procédé roll-to-roll</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Roll-to-roll process</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>112</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0142213
   |texte=   Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024